Nanostructure enhanced ionic transport in fullerene reinforced solid polymer electrolytes.

نویسندگان

  • Che-Nan Sun
  • Thomas A Zawodzinski
  • Wyatt E Tenhaeff
  • Fei Ren
  • Jong Kahk Keum
  • Sheng Bi
  • Dawen Li
  • Suk-Kyun Ahn
  • Kunlun Hong
  • Adam J Rondinone
  • Jan-Michael Y Carrillo
  • Changwoo Do
  • Bobby G Sumpter
  • Jihua Chen
چکیده

Solid polymer electrolytes, such as polyethylene oxide (PEO) based systems, have the potential to replace liquid electrolytes in secondary lithium batteries with flexible, safe, and mechanically robust designs. Previously reported PEO nanocomposite electrolytes routinely use metal oxide nanoparticles that are often 5-10 nm in diameter or larger. The mechanism of those oxide particle-based polymer nanocomposite electrolytes is under debate and the ion transport performance of these systems is still to be improved. Herein we report a 6-fold ion conductivity enhancement in PEO/lithium bis(trifluoromethanesulfonyl) imide (LiTFSI)-based solid electrolytes upon the addition of fullerene derivatives. The observed conductivity improvement correlates with nanometer-scale fullerene crystallite formation, reduced crystallinities of both the (PEO)6:LiTFSI phase and pure PEO, as well as a significantly larger PEO free volume. This improved performance is further interpreted by enhanced decoupling between ion transport and polymer segmental motion, as well as optimized permittivity and conductivity in bulk and grain boundaries. This study suggests that nanoparticle induced morphological changes, in a system with fullerene nanoparticles and no Lewis acidic sites, play critical roles in their ion conductivity enhancement. The marriage of fullerene derivatives and solid polymer electrolytes opens up significant opportunities in designing next-generation solid polymer electrolytes with improved performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers.

Solid-state electrolytes provide substantial improvements to safety and electrochemical stability in lithium-ion batteries when compared with conventional liquid electrolytes, which makes them a promising alternative technology for next-generation high-energy batteries. Currently, the low mobility of lithium ions in solid electrolytes limits their practical application. The ongoing research ove...

متن کامل

STRUCTURAL AND IONIC CONDUCTIVITYSTUDIES ONPLASTICIZED PAN-SODIUM FLUORIDE POLYMER ELECTROLYTES FOR ELECTROCHEMICAL CELL APPLICATIONS

Ion conducting gel polymer electrolytes based on poly acrylonitrle (PAN) complexed with different weight percent ratios of Sodium Fluoride (NaF) salt were prepared by using solution cast technique. Structural characterization was performed using X-ray diffraction (XRD) technique and Fourier transforms infrared (FTIR) spectroscope technique. From the X-rd results increase in amorphous phase with...

متن کامل

Synthesis of New Bio-Based Solid Polymer Electrolyte Polyurethane-LiClO4 via Prepolymerization Method: Effect of NCO/OH Ratio on Their Chemical, Thermal Properties and Ionic Conductivity

Novel bio-based polymer electrolyte was synthesized with LiClO4 as the main source of charge carrier. Initially, polyurethane-LiClO4 polymer electrolytes were synthesized via prepolymerization method with different NCO/OH ratios and labelled them as PU1, PU2, PU3 and PU4. Fourier transform infrared (FTIR) analysis indicates the co-ordination between Li ion and polyurethane in PU1. Differential ...

متن کامل

INTERFACE-MEDIATED ELECTROCHEMICAL EFFECTS IN LITHIUM/POLYMER-CERAMIC CELLS (Postprint)

The paper presents and discusses a method to achieve beneficial electrochemical effects mediated by interfaces in an ionic conducting polymer matrix. The beneficial effects include enhanced ionic transport, catalysis of anodic oxidation reaction, and stabilization of the lithium-electrolyte interface in lithium-based electrochemical cells. Polyethylene oxide (PEO) doped with LiN(SO2CF2CF3)2 (Li...

متن کامل

Solid State Ionics: from Michael Faraday to green energy—the European dimension

Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag2S and PbF2 and coined terms such as cation and anion, electrode and electrolyte. In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 12  شماره 

صفحات  -

تاریخ انتشار 2015